If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+10n-2=0
a = 3; b = 10; c = -2;
Δ = b2-4ac
Δ = 102-4·3·(-2)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{31}}{2*3}=\frac{-10-2\sqrt{31}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{31}}{2*3}=\frac{-10+2\sqrt{31}}{6} $
| p²=−13p−36 | | p2=−13p−36 | | 15/38=b/19 | | 2(5x+3)=7x-9 | | 2(5x3)=7x-9 | | 15d=8 | | 5x+13x=73 | | P=-500+2.50v | | 15z2+22z+8=0 | | X=2/5w | | -1/6=-4/9x | | -1/5=-2x+8/5 | | y=2+3-5 | | y=2+0-5 | | y=2-3-5 | | 8x+3=103 | | y=2-6-5 | | -5=-14x+2 | | -5=-7x+2 | | -5/4=-7/2x+1/2 | | (x-5)•-5=20 | | -x-79=12x | | 4=x/2+5 | | 3n=(56+5)-66+7 | | 2000-5a=-5 | | -5(2x+)+9x=-32 | | -6(v+3)=-36 | | 3u+24=9u | | 1/6f=-6 | | -81=19+9(x-5)^2 | | 1.5-6-3x=9 | | u=9-20 |